

программное обеспечение для создания систем мониторинга объектов

КИВИ-МОНИТОР

Руководство оператора

МТ.КИВИ-МОНИТОР.02.РО1 от 22.11.2018

Наша компания постоянно работает над улучшением качества продукции, что приводит к добавлению новых функциональных возможностей устройств. Поэтому необходимо пользоваться только последними выпусками руководств по эксплуатации, поставляемых совместно с устройствами или опубликованными на официальном сайте www.i-mt.net.

УВАЖАЕМЫЙ КЛИЕНТ! Просим Вас направлять свои пожелания, замечания, предложения и отзывы о нашей продукции на адрес электронной почты 01@i-mt.net.

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ	4
1 НАЗНАЧЕНИЕ	4
2 СИСТЕМНЫЕ ТРЕБОВАНИЯ	6
3 ЗАПУСК ПРОГРАММЫ	6
4 РЕЖИМ МОНИТОРИНГА	7
4.1 Общие сведения	7
4.2 Выключатель	8
4.3 Тележка	8
4.4 Заземляющий нож	9
4.5 Разъединители	10
4.6 Телеизмерения	11
4.7 Сигнализация	11
4.8 Список устройств	12
4.9 Текстовые поля	14
5 PEΔAKTOP	15
5.1 Общие сведения	15
5.2 Настройка связи	16
5.3 Устройство	17
5.4 Тележка	18
5.5 Разъединитель	19
5.6 Заземляющий нож	20
5.7 Телеизмерение	20
5.8 Надпись	22
5.9 Линия	22
5.10 Элемент	23
5 11 Управление объектами	24

ВВЕДЕНИЕ

Настоящее руководство оператора (далее – PO) предназначено для ознакомления с функциональными возможностями и настройкой программного обеспечения **«КИВИ-Монитор»**.

1 НАЗНАЧЕНИЕ

1.1 Программное обеспечение (далее – ПО) КИВИ-Монитор предназначено для диспетчерского управления и сбора данных (SCADA), а также позволяет организовать автоматизированное рабочее место (APM) для удаленной настройки цифровых устройств производства НПП «Микропроцессорные технологии» (APM релейщика, APM оперативного персонала).

1.2 **«КИВИ-Монитор»** обеспечивает обмен данными по протоколу Modbus с различными устройствами, подключенными к компьютеру через физические или виртуальные COM-порт(ы):

- цифровые устройства релейной защиты Алтей;
- микропроцессорные блоки защиты присоединений секций сборных шин 6-35 кВ БЗП;
- микропроцессорные блоки защиты присоединений секций сборных шин 6-35 кВ от замыканий на землю в сетях с изолированной или компенсированной нейтралью Геум;
- Устройства сторонних производителей.
 - 1.3 ПО позволяет осуществлять:
- мониторинг положения коммутационных аппаратов (выключателей, отделителей, короткозамыкателей);
- отображение параметров сети (токов, напряжений, передаваемой мощности и др.);
- мониторинг причин срабатывания аварийной и предупредительной сигнализации;
- просмотр и скачивание файлов журналов и осциллограмм с цифровых устройств производства НПП «Микропроцессорные технологии»; *
- мониторинг текущего состояния и удаленную настройку цифровых устройств производства НПП «Микропроцессорные технологии». **

*, ** - данные функциональные возможности реализуются с помощью программного обеспечения «КИВИ», запускаемого автоматически при подключении к конкретному устройству в ПО.

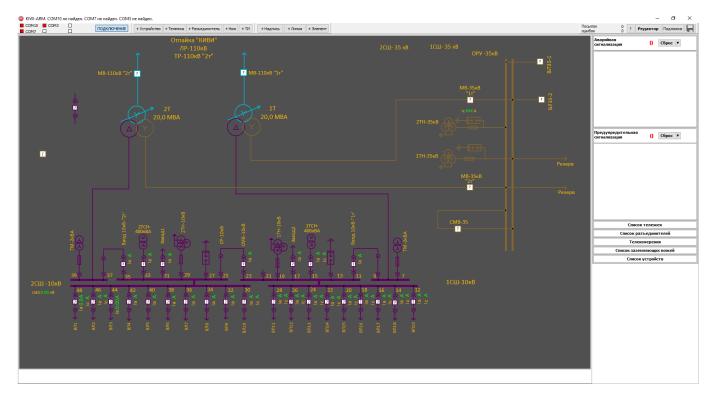


Рисунок 1.1 – Пример отображения первичной однодинейной схемы

- 1.4 Функциональные особенности ПО КИВИ-Монитор:
- диагностика каналов связи с устройствами;
- защита от изменения настроек доступа;
- логирование при опросе каналов связи;
- автоматический перезапуск программы при сбоях Windows.
 - 1.5 Работа с ПО КИВИ-Монитор предполагает два возможных режима:
- режим отображения;
- режим редактора.

Пример отображения первичной однолинейной схемы представлен на рисунке 1.1.

2 СИСТЕМНЫЕ ТРЕБОВАНИЯ

Рекомендуемые системные требования:

- OC Windows XP и новее;
- разрешение экрана Full HD: 1920x1080;
- масштабирование экрана: 100%.

«КИВИ-Монитор» выполнен в виде двух файлов, не требующих дополнительных прав администратора для их запуска. Для начала работы достаточно скачать файлы или взять на диске и запустить на ПК под управлением операционной системы Windows.

Для полноценного использования функциональных возможностей **«КИВИ-Монитор»** необходимо дополнительно установить программное обеспечение **«КИВИ»**, если оно ещё не установлено на ПК. Скачать актуальную версию можно по ссылке: http://i-mt.net/kiwi

3 ЗАПУСК ПРОГРАММЫ

Для начала пользования программой нужно запустить файл **«KIWIMonitorAutoStart.exe»** - это вочдогер, программа, осуществляющая запуск целевой программы **«КИВИ-Монитор»** и её перезапуск в случае программных сбоев в системе.

Для остановки программы нужно нажать **«Закрыть окно»** в программе **«КИВИ-Монитор»**, а затем – **«Остановить»** в появившемся окне. Если в этом окне не нажимать ничего в течение 5 секунд или нажать **«Отмена»** - произойдёт повторный запуск **«КИВИ-Монитор»**.

4 РЕЖИМ МОНИТОРИНГА

4.1 Общие сведения

В режиме мониторинга на схеме можно видеть положение выкатных элементов и коммутационных аппаратов (тележек выключателей, выключателей, заземляющих ножей и разъединителей), результаты телеизмерений, причины срабатывания аварийной и предупредительной сигнализации, состояние связи с устройствами, а также иную текстовую и графическую информацию, в соответствии с выполненной оператором настройкой. Пример некоторых элементов, доступных для отображения на мнемосхеме схеме приведён на рисунке 4.1.

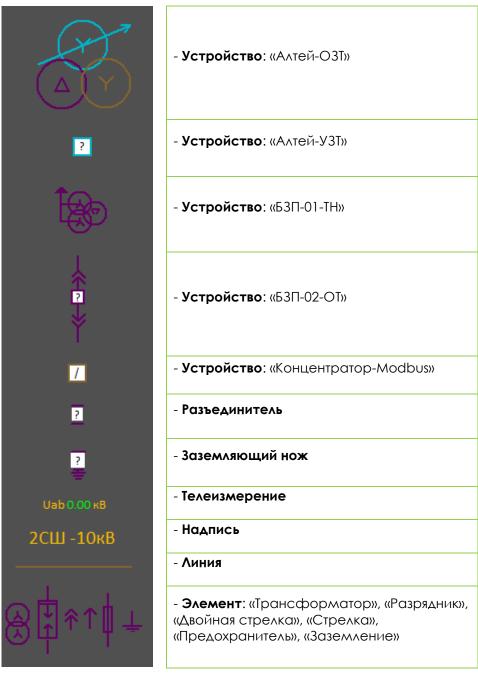


Рисунок 4.1 – Пример отображения элементов на мнемосхеме

По умолчанию цветовое оформление элементов разных классов напряжения сделано согласно СТО 56947007-25.040.70.101-2011 «Правила оформления нормальных схем электрических соединений подстанций и графического отображения информации посредством ПТК и АСУ П»:

- Фон серый: RGB(80, 80, 80);
- 110 кВ голубой: RGB(0, 180, 200);
- 35 кВ коричневый: RGB(130, 100, 50);
- 110 кВ фиолетовый: RGB(100, 0, 100).

4.2 Выключатель

Выключатель на схеме может принимать одно из четырех состояний, указанных в таблице <u>4.1</u>, определяемых сигналами отключенного положения **«РПО»** и включенного **«РПВ»**, считываемыми с цифрового устройства.

			Таблица 4.1
Положение	Отображение	РПО	РПВ
Включен		0	1
Отключен		1	0
Недостоверно	?	0	0
Неисправность		1	1

При нажатии на выключатель появляется диалоговое окно, спрашивающее подтверждение перехода в ПО **«КИВИ»**. При подтверждении действия происходит запуск программы **«КИВИ»** с подключением к нажатому выключателю. При закрытии программы **«КИВИ»** происходит повторный запуск ПО **«КИВИ-Монитор»**.

Подробнее о добавлении и настройке выключателей см. в разделе 5.

4.3 Тележка

Тележка на схеме может принимать одно из трёх состояний, указанных в таблице <u>4.2</u>, определяемых сигналами рабочего положения **«Работа»** и контрольного положения **«Контроль»**, считываемыми с цифрового устройства.

Подробнее о добавлении и настройке выкатных тележек см. в разделе 5.

В области **«Список тележек»** отображаются все добавленные в рабочее пространство тележки. Изначально список свёрнут. Для разворачивания списка нужно нажать на его название. При повторном нажатии произойдёт сворачивание списка.

Если с цифрового устройства заведён только один сигнал – необходимо указать адрес регистра неиспользуемого сигнала **«Контроль»** нулевым: **\$0000**. В этом случае в КИВИ-Монитор будет обрабатываться только факт наличия или отсутствия сигнала **«Работа»**.

			Таблица 4.2
Состояние выкатной тележки КРУ	Отображение	Работа	Контроль
«Рабочее»		1	любой
«Контроль»	↓ ↓ ↓ ↓ ■ □ □ □ Y Y Y	0	1
«Ремонтное»	Υ Υ	0	0

4.4 Заземляющий нож

Заземляющий нож на схеме может принимать одно из четырёх состояний, указанных в таблице <u>4.3</u>, определяемых сигналами включенного положения **«Включено»** и отключенного положения **«Отключено»**, считываемыми с цифрового устройства.

			Таблица 4.3
Положение	Отображение	Отключено	Включено
Включен	Ī	0	1
Отключен	_ =	1	0
Недостоверно	?	0	0
Неисправность		1	1

Подробнее о добавлении и настройке заземляющих ножей см. в разделе $\underline{5}$.

В области **«Список заземляющих ножей»** отображаются все добавленные в рабочее пространство заземляющие ножи. Изначально список свёрнут. Для разворачивания списка нужно нажать на его название. При повторном нажатии произойдёт сворачивание списка.

Если с цифрового устройства заведён только один сигнал – необходимо указать адрес регистра неиспользуемого сигнала **«Отключено»** нулевым: **\$0000.** В этом случае в КИВИ-Монитор будет обрабатываться только факт наличия или отсутствия сигнала **«Включено».**

4.5 Разъединители

Разъединитель на схеме может принимать одно из четырёх состояний, указанных в таблице 4.3, определяемых сигналами включенного положения **«Включено»** и отключенного положения **«Отключено»**, считываемыми с цифрового устройства.

			Таблица 4.4
Положение	Отображение	Отключено	Включено
Включен	Ι	0	1
Отключен	=	1	0
Недостоверно	?	0	0
Неисправность	Z	1	1

Подробнее о добавлении и настройке разъединителей см. в разделе 5.

В области **«Список разъединителей»** отображаются все добавленные в рабочее пространство разъединители. Изначально список свёрнут. Для разворачивания списка нужно нажать на его название. При повторном нажатии произойдёт сворачивание списка.

Если необходимо добавить секционный разъединитель – то во всплывающем окне добавления «Разъединителя» необходимо отметить соответствующий чекбокс **«СВ»** и выставить адрес сигнала **«Контроль»** равным **\$0000**. В этом случае разъединитель будет отображаться на схеме одним из следующих способов, в зависимости от состояния сигнала «Работа», представленных в таблице:

Таблица 4.5			
Положение	Отображение	Отключено	Включено
Включен	♦	Нет	1

			Таблица 4.5
Положение	Отображение	Отключено	Включено
Отключен	Α	Нет	0
	Y		

4.6 Телеизмерения

Отображение аналоговых величин телеизмерений состоит из трёх частей (рисунок 4.2):

- название отображаемой величины;
- считанное значение (пустое, если не удалось считать);
- размерность этой величины.

В области «**Телеизмерения**» отображаются все добавленные в рабочее пространство телеизмерения. Изначально список свёрнут. Для разворачивания списка нужно нажать на его название. При повторном нажатии произойдёт сворачивание списка. Отображение телеизмерений имеет следующий вид: название ТИ, значение ТИ, Размерность ТИ и затем в скобках указана принадлежность ТИ к устройству в рабочем пространстве.

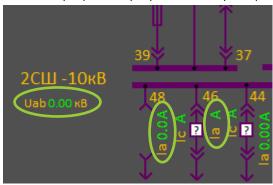


Рисунок 4.2 – Пример отображения аналоговых величин телеизмерений

4.7 Сигнализация

При появлении битов аварийной или предупредительной сигнализации на каком-либо из подключенных устройств информация о времени появлении сигнала, названии события и устройстве, на котором появился сигнал, появится в соответствующей области справа (рисунок 4.3). Также в заголовке области указывается общее число новых сигналов, появившихся после последнего совершённого сброса сигнализации. При нажатии на кнопку «Сброс» появляется меню, из которого можно выбрать:

- сбросить только счётчик происходит обнуление счётчика новых сигналов;
- сбросить список происходит обнуление счётчика новых сигналов и очистка списка сигналов.

При нажатии на строку с событием запускается ПО **«КИВИ»** с подключением к устройству, с которого было считано это событие. При закрытии программы **«КИВИ»** происходит повторный запуск ПО **«КИВИ-Монитор»**.

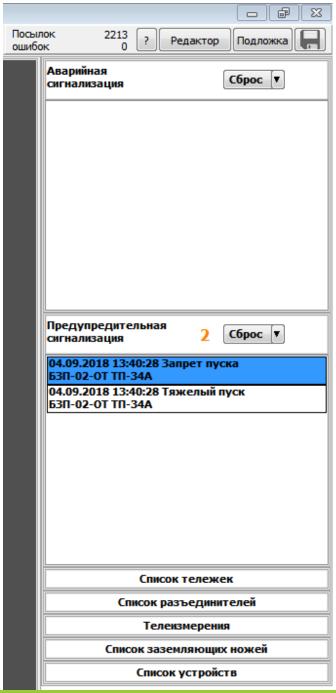


Рисунок 4.3 – Пример отображения Аварийной и предупредительной сигнализации

4.8 Список устройств

4.8.1 Во вкладке **«Список устройств»** отображается список устройств, добавленных в схему (рисунок <u>4.4</u>). Принадлежность к определённому классу напряжения того или иного устройства выделена цветом шрифта:

- голубой 110 кВ;
- коричневый 35 кВ;

фиолетовый – 10 кВ.

Рисунок 4.4 – Пример отображения списка устройств

При нажатии на название устройства в соответствующем разделе **«Список устройств»** появляется диалоговое окно, спрашивающее подтверждение перехода в ПО **«КИВИ»**. При подтверждении действия происходит запуск **«КИВИ»** с подключением к выбранному устройству. При закрытии программы **«КИВИ»** происходит повторный запуск ПО **«КИВИ-Монитор»**.

Подробнее о добавлении и настройке устройств см. в разделе 5.

4.8.2 Состояние связи с устройствами

Отследить состояние подключения к устройству в программе «КИВИ-Монитор» можно двумя способами:

- по состоянию заданных СОМ-портов (рисунок 4.5) при наличии связи с заданным портом соответствующий индикатор имеет зелёный цвет, в противном случае красный;
- по отображению устройства в **«Списке устройств»** (рисунок <u>4.6</u>) если в списке устройство выделено жирным курсивом, значит с этим устройством нет связи. Если связь есть, то название устройства не выделяется.

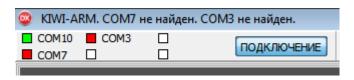


Рисунок 4.5 – Пример отображения состояния СОМ-портов

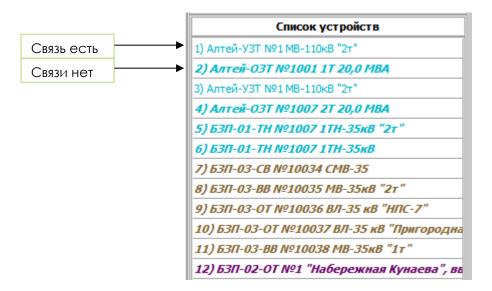


Рисунок 4.6 – Пример отображения состояния связи с устройством

В случае нарушения связи с устройством во время работы для восстановления связи необходимо нажать на кнопку **«Подключение»** (указано на рисунке <u>4.5</u>) – в первое нажатие произойдёт отключение от всех устройств, а в повторное – переподключение ко всем заданным портам.

4.9 Текстовые поля

Текстовые поля служат для удобства ориентирования в схеме, отображаются поверх фона (рисунок 4.7). Подробнее о добавлении и настройке текстовых полей см. в разделе $\underline{5}$.

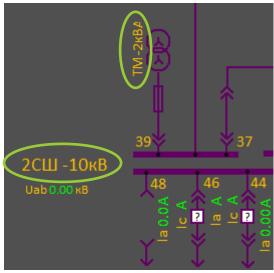


Рисунок 4.7 – Пример отображения текстовых полей

5 РЕДАКТОР

5.1 Общие сведения

5.1.1 Для перехода в режим **«Редактора»** необходимо нажать кнопку **«Редактор»** (рисунок <u>5.1</u>) и ввести пароль доступа в появившемся диалоговом окне. После верного ввода пароля и подтверждения в верхней области программы появляются дополнительные функциональные кнопки для редактирования первичной схемы (рисунок <u>5.2</u>).

Рисунок 5.1 - Кнопка перехода в режим «Редактор»

Рисунок 5.2 - Меню редактирования схемы

5.1.2 Для удобства редактирования в программе реализована возможность загружать подложку под рабочее пространство – можно загрузить чертёж и производить вырисовку схемы поверх него. Для загрузки подложки необходимо нажать на кнопку «Подложка» рядом с кнопкой «Редактор» (указано на рисунке 5.1) и выбрать нужный файл на ПК. После этого на рабочем пространстве появится выбранное изображение (рисунок 5.3). После повторного нажатия на эту кнопку произойдёт удаление подложки с рабочего пространства.

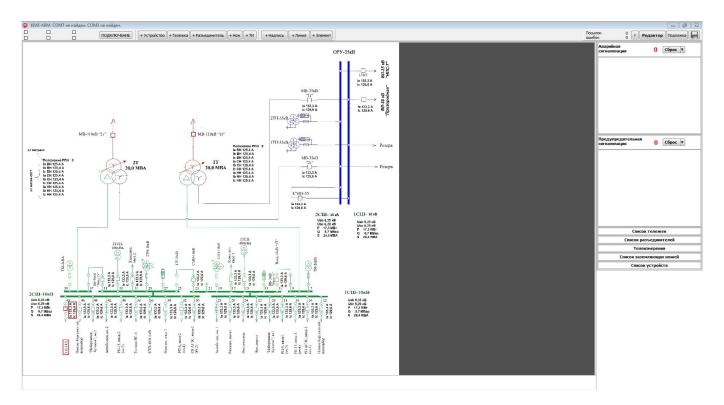


Рисунок 5.3 - Пример отображения загруженной подложки

- $5.1.3 \, \Delta$ ля сохранения проекта нужно нажать на кнопку **«Сохранить»** справа от кнопки **Подложка»** (указано на рисунке $\underline{5.1}$).
- 5.1.4 Для вызова краткой справки по используемым сочетаниям клавиш в программе нужно нажать на кнопку **«Помощь»**, расположенную слева от кнопки **«Редактор»** (указано на рисунке <u>5.1</u>).

5.2 Настройка связи

Для начала работы с редактором первоначально необходимо настроить файл **«DeviceList.xml»** (располагается в одной папке с программой «КИВИ-Монитор»). Для этого открыть его любым удобным текстовым редактором и добавить/отредактировать строки настройки СОМ-портов следующим образом (рисунок <u>5.4</u>):

Рисунок 5.4 - Настройка СОМ-портов

В атрибуте **«Port»** указывается порт подключения устройств. В атрибуте **«Group»** указывается любой номер, например, удобно разделять устройства разных классов напряжений в разные группы. В атрибут **«BaudRate»** указывается скорость обмена с заданным портом. Если портов несколько, то для каждого порта отдельная строка настройки. После редактирования и сохранения файла можно приступать к редактированию схемы.

При запуске программы в левом верхнем углу будут отображаться заданные порты и цветом выделено их состояние: красный – нет связи с портом либо нет устройств, связанных с этим портом в рабочем пространстве; зелёный – связь с подключенными к этому порту устройствами есть.

5.3 Устройство

При нажатии на кнопку **«+ Устройство»** (указано на рисунке $\underline{5.2}$) появляется окно настройки свойств добавляемого устройства (рисунок $\underline{5.5}$):

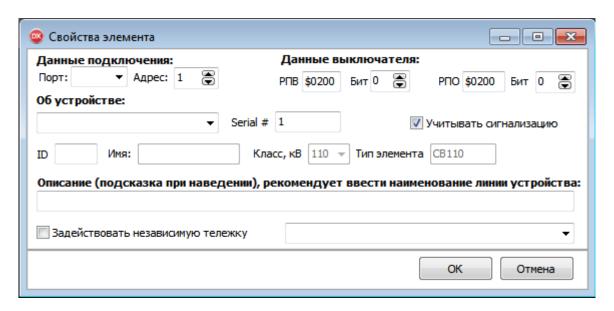


Рисунок 5.5 - Окно настройки свойств устройство

Для добавления устройства необходимо указать:

- из выпадающего списка «Порт» номер доступного СОМ-порта, к которому подключено добавляемое устройство;
- из выпадающего списка **«Адрес»** адрес в сети Modbus;
- из выпадающего списка «Об устройстве» соответствующий тип устройства: Алтей-УЗТ, Алтей-ОЗТ, БЗП-01-ТН и др.;
- в поле «Serial» серийный номер устройства
- в поле «РПВ» и «Бит» адрес регистра и номер бита РПВ соответственно;
- в поле «РПО» и «Бит» адрес регистра и номер бита РПО соответственно;
- флажок «Учитывать сигнализацию» в случае, если требуется мониторинг аварийной и предупредительной сигнализации;
- в поле **«Описание ...»** наименование присоединения (рекомендуется для удобства дальнейшего мониторинга);
- флажок «Задействовать независимую тележку» в случае, если требуется мониторинг положения независимой выкатной тележки.
- из выпадающего списка **«Об устройстве»** соответствующую тележку, если поставлен флажок **«Задействовать независимую тележку»**

Поле «ID», «Имя», «Класс, кВ» и «Тип элемента» заполнятся автоматически.

При нажатии **«ОК»** окно настройки закроется и в рабочем пространстве появится добавленное устройство. При нажатии **«Отмена»** или **«Закрыть окно»** окно настройки закроется без добавления устройства в рабочее пространство.

Одним из возможных для добавления устройств является Modbus-концентратор. Его наличие в схеме обусловлено необходимостью опроса положения тележек, разъединителей, заземляющих ножей.

При добавлении нового устройства его название автоматически добавляется в **«Список** устройств» в правой области рабочего пространства.

При одновременном нажатии **«Alt»** и левой кнопки мыши по устройству в рабочем пространстве или по его названию в **«Списке устройств»** происходит открытие окна свойств этого устройства, где можно посмотреть текущие настройки. При необходимости в этом окне можно изменить интересующие свойства устройства и сохранить сделанные изменения нажатием кнопки **«Ок»**. При нажатии **«Отмена»** или **«Закрыть окно»** окно свойств устройства будет закрыто без сохранения изменений.

5.4 Тележка

При нажатии на кнопку **«+ Тележка»** (указано на рисунке $\underline{5.2}$) появляется окно настройки свойств добавляемой тележки (рисунок $\underline{5.6}$):

Для добавления тележки необходимо указать:

- из выпадающего списка **«Устройство для получения данных»** устройство, с которого получать сигналы положения тележки (например, Modbus-концентратор);
- в поле «Работа» и «Бит» адрес регистра и номер бита Работа соответственно;
- в поле **«Контроль»** и **«Бит»** адрес регистра и номер бита **Контроль** соответственно. Если заведён только один сигнал **«Работа»** адрес регистра сигнала **«Контроль»** необходимо установить равным **\$0000**;
- в поле **«Название тележки ...»** наименование тележки (для удобства дальнейшего мониторинга рекомендуется указывать название, совпадающее с названием выключателя);

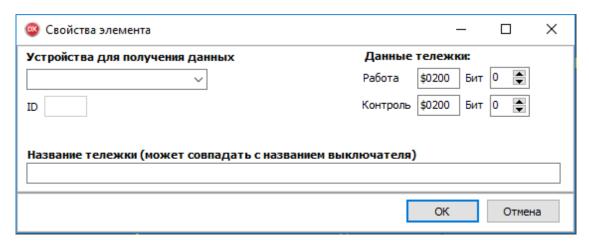


Рисунок 5.6 – Окно настройки свойств выкатной тележки

Поле «ID» заполнятся автоматически.

При нажатии **«ОК»** окно настройки закроется и в **«Списке тележек»** появится название добавленной тележки. При нажатии **«Отмена»** или **«Закрыть окно»** окно настройки закроется без добавления тележки в рабочее пространство.

После добавления тележки в список она станет доступна в выпадающем списке для выбора независимой тележки в настройках добавляемого **«Устройства»** (см. п. <u>5.3</u>).

При одновременном нажатии **«Alt»** и левой кнопки мыши по названию тележки в **«Списке тележек»** происходит открытие окна свойств этой тележки, где можно посмотреть текущие настройки. При необходимости в этом окне можно изменить интересующие свойства тележки и сохранить сделанные изменения нажатием кнопки **«Ок»**. При нажатии **«Отмена»** или **«Закрыть окно»** окно свойств устройства будет закрыто без сохранения изменений.

5.5 Разъединитель

При нажатии на кнопку **«+ Разъединитель»** (указано на рисунке <u>5.2</u>) появляется окно настройки свойств добавляемого разъединителя (рисунок <u>5.7</u>):

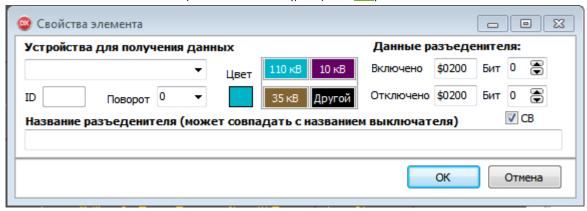


Рисунок 5.7 – Окно настройки свойств разъединителя

Для добавления разъединителя необходимо указать:

- из выпадающего списка **«Устройство для получения данных»** устройство, с которого получать сигналы положения разъединителя (например, Modbus-концентратор);
- в поле **«Включено»** и **«Бит»** адрес регистра и номер бита **Включено** соответственно;
- в поле «Отключено» и «Бит» адрес регистра и номер бита Отключено соответственно;
- из выпадающего списка «Поворот» ориентацию элемента в рабочем пространстве: 0 − 0 градусов (вертикально вверх), 1 − 90 градусов (горизонтально вправо), 3 − 180 градусов (вертикально вниз), 4 − 270 градусов (горизонтально влево);
- в поле «Название разъединителя ...» наименование разъединителя;
- чекбокс «СВ» если необходимо добавить секционный разъединитель. В случае добавления секционного разъединителя адрес сигнала «Отключено» указывается равным \$0000.
 Поле «ID» заполнятся автоматически.

При нажатии **«ОК»** окно настройки закроется и в рабочем пространстве появится добавленный разъединитель. При нажатии **«Отмена»** или **«Закрыть окно»** окно настройки закроется без добавления разъединителя в рабочее пространство.

При добавлении нового разъединителя его название автоматически добавляется в **«Список** разъединителей» в правой области рабочего пространства.

При одновременном нажатии **«Alh»** и левой кнопки мыши по разъединителю в рабочем пространстве или по его названию в **«Списке разъединителей»** происходит открытие окна свойств этого разъединителя, где можно посмотреть текущие настройки. При необходимости в этом окне можно изменить интересующие свойства разъединителя и сохранить сделанные изменения нажатием кнопки **«Ок»**. При нажатии **«Отмена»** или **«Закрыть окно»** окно свойств разъединителя будет закрыто без сохранения изменений.

5.6 Заземляющий нож

При нажатии на кнопку **«+ Нож»** (указано на рисунке $\underline{5.2}$) появляется окно настройки свойств добавляемого разъединителя (рисунок $\underline{5.8}$):

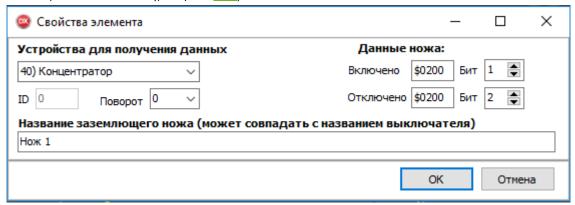


Рисунок 5.8 – Окно настройки свойств заземляющего ножа

Для добавления заземляющего ножа необходимо указать:

- из выпадающего списка **«Устройство для получения данных»** устройство, с которого получать сигналы положения заземляющего ножа (например, Modbus-концентратор);
- в поле **«Включено»** и **«Бит»** адрес регистра и номер бита **Включено** соответственно;
- в поле **«Отключено»** и **«Бит»** адрес регистра и номер бита **Отключено** соответственно. Если заведён только один сигнал **«Включено»** адрес регистра сигнала **«Отключено»** необходимо установить равным **\$0000**;
- из выпадающего списка «Поворот» ориентацию элемента в рабочем пространстве: 0 − 0 градусов (вертикально вверх), 1 − 90 градусов (горизонтально вправо), 3 − 180 градусов (вертикально вниз), 4 − 270 градусов (горизонтально влево);
- в поле **«Название заземляющего ножа ...»** наименование заземляющего ножа; Поле **«ID»** заполнятся автоматически.

При нажатии **«ОК»** окно настройки закроется и в рабочем пространстве появится добавленный заземляющий нож. При нажатии **«Отмена»** или **«Закрыть окно»** окно настройки закроется без добавления заземляющего ножа в рабочее пространство.

При добавлении нового заземляющего ножа его название автоматически добавляется в **«Список заземляющих ножей»** в правой области рабочего пространства.

При одновременном нажатии **«Alt»** и левой кнопки мыши по разъединителю в рабочем пространстве или по его названию в **«Списке заземляющих ножей»** происходит открытие окна свойств этого заземляющего ножа, где можно посмотреть текущие настройки. При необходимости в этом окне можно изменить интересующие свойства заземляющего ножа и сохранить сделанные изменения нажатием кнопки **«Ок»**. При нажатии **«Отмена»** или **«Закрыть окно»** окно свойств заземляющего ножа будет закрыто без сохранения изменений.

5.7 Телеизмерение

При нажатии на кнопку **«+ ТИ»** (указано на рисунке <u>5.2</u>) появляется окно настройки свойств добавляемого разъединителя (рисунок <u>5.9</u>5.8):

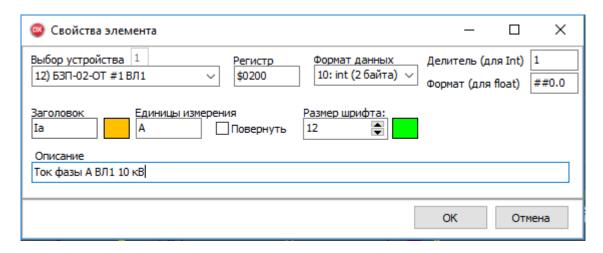


Рисунок 5.9 – Окно настройки телеизмерения

Для добавления телеизмерения необходимо указать:

- из выпадающего списка «Выбор устройства» устройство, с которого будет считываться информация);
- в поле «Регистр» адрес регистра с которого будет считываться информация;
- из выпадающего списка «Формат данных» формат отображения данных (для БЗП «int (2 байта)»,; для Алтей «int32 (4 байта)» или «float32 (4 байта)», в зависимости от типа считываемых данных;
- в поле **«Делитель (для Int)»** делитель, указывающий, во сколько раз нужно поделить считанный результат. Принимает значения:
 - 1, если считывается готовая к отображению величина;
 - кратные **10**, если считывается число с указанной точностью (например, если в регистре записано значение 5,01 A с точностью до двух знаков после запятой, то с устройства считается 501. Поэтому в этом случае вводится делитель 100: 501/100 = 5.01).
- в поле **«Формат (для float)»** формат отображения результата. Знак **«#»** указывает на то, что эта цифра будет отображаться, только если она не нулевая, а знак **«0»** -цифра на этом месте всегда отображается. (при заданном формате ##0.0 если считывается ровно 0, будет отображаться всегда с дробной частью с точностью до одного знака: **0.0.** Если это ровно 100 **100.0**. Если это 50.356 **50.4**);
- **в** поле **«Заголовок»** название ТИ;
- в квадрате справа от **«Заголовка»** при щелчке левой кнопке по нему выбирается цвет отображения названия и единицы измерения ТИ;
- в поле **«Единицы измерения»** единицы измерения ТИ, которые будут отображаться после считанного значения ТИ;
- флажок «Повернуть», если нужно изменить ориентацию отображения ТИ с горизонтальной на вертикальную.
- в поле «Размер шрифта» размер надписи отображаемого телеизмерения;
- в квадрате справа от поля **«Размер шрифта»** при щелчке левой кнопке по нему выбирается цвет отображения считанного значения ТИ;

При нажатии **«ОК»** окно настройки закроется и в рабочем пространстве появится добавленное телеизмерение. При нажатии **«Отмена»** или **«Закрыть окно»** окно настройки закроется без добавления ТИ в рабочее пространство.

При добавлении нового ТИ его название автоматически добавляется в список **«Телеизмерения»** в правой области рабочего пространства.

При одновременном нажатии **«Alh»** и левой кнопки мыши по телеизмерению в рабочем пространстве происходит открытие окна свойств этого ТИ, где можно посмотреть текущие настройки. При необходимости в этом окне можно изменить интересующие свойства ТИ и сохранить сделанные изменения нажатием кнопки **«Ок»**. При нажатии **«Отмена»** или **«Закрыть окно»** окно свойств ТИ будет закрыто без сохранения изменений.

5.8 Надпись

При нажатии на кнопку **«+ Надпись»** (указано на рисунке <u>5.2</u>) появляется окно настройки свойств добавляемой надписи (рисунок <u>5.10</u>5.8):

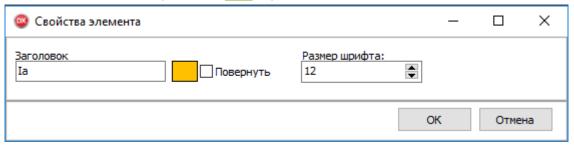


Рисунок 5.10 – Окно настройки свойств надписи

Для добавления надписи необходимо указать:

- в поле «Заголовок» текст надписи, который будет отображаться;
- в квадрате справа от «Заголовка» при щелчке левой кнопке по нему выбирается цвет отображения надписи;
- флажок «Повернуть», если нужно изменить ориентацию отображения надписи с горизонтальной на вертикальную.
- в поле «Размер шрифта» размер отображения текста надписи;

При нажатии **«ОК»** окно настройки закроется и в рабочем пространстве появится добавленная надпись. При нажатии **«Отмена»** или **«Закрыть окно»** окно настройки закроется без добавления надписи в рабочее пространство.

При одновременном нажатии **«Alh»** и левой кнопки мыши по надписи в рабочем пространстве происходит открытие окна свойств этой надписи, где можно посмотреть текущие настройки. При необходимости в этом окне можно изменить интересующие свойства надписи и сохранить сделанные изменения нажатием кнопки **«Ок»**. При нажатии **«Отмена»** или **«Закрыть окно»** окно свойств надписи будет закрыто без сохранения изменений.

5.9 Линия

При нажатии на кнопку **«+ Линия»** (указано на рисунке <u>5.2</u>) появляется окно настройки свойств добавляемой надписи (рисунок <u>5.11</u>5.8):

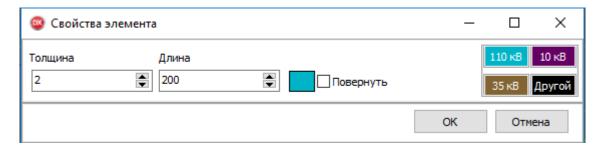


Рисунок 5.11 – Окно настройки свойств линии

Для добавления линии необходимо указать:

- в поле **«Толщина»** толщина линии в пикселях;
- в поле «Длина» длина линии в пикселях;
- в квадрате справа от поля «Длина» при щелчке левой кнопке по нему выбирается цвет отображения линии. Для удобства в правой части окна настроек добавлены кнопки быстрого изменения цвета линии, исходя из выбранного класса напряжения;
- флажок «Повернуть», если нужно изменить ориентацию отображения линии с горизонтальной на вертикальную.

При нажатии **«ОК»** окно настройки закроется и в рабочем пространстве появится добавленная линия. При нажатии **«Отмена»** или **«Закрыть окно»** окно настройки закроется без добавления линии в рабочее пространство.

При одновременном нажатии **«Alh»** и левой кнопки мыши по линии в рабочем пространстве происходит открытие окна свойств этой линии, где можно посмотреть текущие настройки. При необходимости в этом окне можно изменить интересующие свойства линии и сохранить сделанные изменения нажатием кнопки **«Ок»**. При нажатии **«Отмена»** или **«Закрыть окно»** окно свойств линии будет закрыто без сохранения изменений.

Изменить длину линии можно двумя способами:

- навести на её край курсор и с нажатой клавишей **«Shift»** и зажатой левой кнопкой мыши двигать курсор в сторону увеличения/уменьшения длины. По окончании действия отпустить зажатые клавиши;
- **з**айти в свойства линии и изменить значение в поле **«Длина»**.

5.10 Элемент

При нажатии на кнопку **«+Элемент»** (указано на рисунке $\underline{5.2}$) появляется окно настройки свойств добавляемого элемента (рисунок $\underline{5.12}$ 5.8):

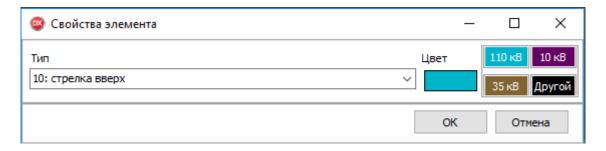


Рисунок 5.12 – Окно настройки свойств элемента

Для добавления элемента необходимо указать:

- из выпадающего списка **«Тип»** тип добавляемого элемента. Ориентация элементов заложена в тип, например, **«Стрелка вверх»** будет отображаться в вертикальной ориентации с направлением снизу-вверх, а **«Стрелка вправо»** горизонтально слеванаправо. Некоторые элементы не могут иметь ориентацию, например, **«Узел»**.
- в квадрате справа от поля **«Тип»** при щелчке левой кнопке по нему выбирается цвет отображения элемента. Для удобства в правой части окна настроек добавлены кнопки быстрого изменения цвета элемента, исходя из выбранного класса напряжения;

При нажатии **«ОК»** окно настройки закроется и в рабочем пространстве появится добавленный элемент. При нажатии **«Отмена»** или **«Закрыть окно»** окно настройки закроется без добавления элемента в рабочее пространство.

При одновременном нажатии **«Alh»** и левой кнопки мыши по линии в рабочем пространстве происходит открытие окна свойств этого элемента, где можно посмотреть текущие настройки. При необходимости в этом окне можно изменить интересующие свойства элемента и сохранить сделанные изменения нажатием кнопки **«Ок»**. При нажатии **«Отмена»** или **«Закрыть окно»** окно свойств элемента будет закрыто без сохранения изменений.

5.11 Управление объектами

5.11.1 Перетаскивание объекта

Для изменения места размещения объекта в рабочем пространстве нужно навести на него курсор и с нажатой клавишей **«Сtrl»** зажать левую кнопку мыши. С зажатыми клавишами произвести перетаскивание объекта на нужное место. По окончании действия отпустить зажатые клавиши.

5.11.2 Редактирование свойств объекта

Для редактирования свойств объекта существует два способа:

- навести на интересующий объект курсор и с нажатой клавишей «Alt» нажать левую кнопку мыши;
- навести на название интересующего объекта в соответствующем списке в области справа (если отображение в списке предполагается свойствами самого объекта) курсор и с нажатой клавишей «Alt» нажать левую кнопку мыши.

Появится окно свойств объекта, такое же, как при добавлении этого объекта. Изменение свойств происходит путём изменения данных в нужных полях и подтверждением этих действий кнопкой **«Ок»**. При нажатии **«Отмена»** или **«Закрыть окно»** окно редактирования закроется без изменения свойств объекта.

5.11.3 Копирование объекта

Для копирования объекта нужно навести на него курсор и с нажатыми клавишами **«Shift»** и **«Ctrl»** нажать левую кнопку мыши. При этом откроется окно настройки свойств копируемого объекта с заполненными полями. Некоторые значения, например, **«Порт»** или **«Устройство получения данных»** не копируются. По желанию изменяются необходимые значения и указываются незаполненные поля.

При нажатии **«ОК»** окно настройки закроется и в рабочем пространстве появится скопированный объект. При нажатии **«Отмена»** или **«Закрыть окно»** окно настройки закроется без добавления объекта в рабочее пространство.

5.11.4 Удаление объекта

Для удаления объекта нужно навести на него курсор и с нажатыми клавишами **«Shift»**, **«Ctrl»** и **«Alt»** нажать левую кнопку мыши. Появится диалоговое окно, запрашивающее подтверждение удаления. При нажатии **«Ок»** произойдёт закрытие диалогового окна и удаление объекта из рабочего пространства и из соответствующего списка из области справа. При нажатии **«Отмена»** или **«Закрыть окно»** диалоговое окно закроется без удаления объекта.

www.i-mt.net 8 800 555 25 11 01@i-mt.net